Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(16): 10912-10920, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613502

RESUMO

The development of two-dimensional (2D) magnetism is driven not only by the interest of low-dimensional physics but also by potential applications in high-density miniaturized spintronic devices. However, 2D materials possessing a ferromagnetic order with a relatively high Curie temperature (Tc) are rare. In this paper, the evidence of ferromagnetism in monolayer FeCl2 on Au(111) surfaces, as well as the interlayer antiferromagnetic coupling of bilayer FeCl2, is characterized by using spin-polarized scanning tunneling microscopy. A Curie temperature (Tc) of ∼147 K is revealed for monolayer FeCl2, based on our static magneto-optical Kerr effect measurements. Furthermore, temperature-dependent magnetization dynamics is investigated by the time-resolved magneto-optical Kerr effect. A transition from one- to two-step demagnetization occurs as the lattice temperature approaches Tc, which supports the Elliott-Yafet spin relaxation mechanism. The findings contribute to a deeper understanding of the underlying mechanisms governing ultrafast magnetization in 2D ferromagnetic materials.

2.
Nat Commun ; 15(1): 1765, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409207

RESUMO

Phase engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) offers opportunities for exploring unique phase-specific properties and achieving new desired functionalities. Here, we report a phase-selective in-plane heteroepitaxial method to grow semiconducting H-phase CrSe2. The lattice-matched MoSe2 nanoribbons are utilized as the in-plane heteroepitaxial template to seed the growth of H-phase CrSe2 with the formation of MoSe2-CrSe2 heterostructures. Scanning tunneling microscopy and non-contact atomic force microscopy studies reveal the atomically sharp heterostructure interfaces and the characteristic defects of mirror twin boundaries emerging in the H-phase CrSe2 monolayers. The type-I straddling band alignments with band bending at the heterostructure interfaces are directly visualized with atomic precision. The mirror twin boundaries in the H-phase CrSe2 exhibit the Tomonaga-Luttinger liquid behavior in the confined one-dimensional electronic system. Our work provides a promising strategy for phase engineering of 2D TMDs, thereby promoting the property research and device applications of specific phases.

3.
ACS Appl Mater Interfaces ; 15(15): 19574-19581, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014936

RESUMO

Single-layer heterostructures of magnetic materials are unique platforms for studying spin-related phenomena in two dimensions (2D) and have promising applications in spintronics and magnonics. Here, we report the fabrication of 2D magnetic lateral heterostructures consisting of single-layer chromium triiodide (CrI3) and chromium diiodide (CrI2). By carefully adjusting the abundance of iodine based on molecular beam epitaxy, single-layer CrI3-CrI2 heterostructures were grown on Au(111) surfaces with nearly atomic-level seamless boundaries. Two distinct types of interfaces, i.e., zigzag and armchair interfaces, have been identified by means of scanning tunneling microscopy. Our scanning tunneling spectroscopy study combined with density functional theory calculations indicates the existence of spin-polarized ground states below and above the Fermi energy localized at the boundary. Both the armchair and zigzag interfaces exhibit semiconducting nanowire behaviors with different spatial distributions of density of states. Our work presents a novel low-dimensional magnetic system for studying spin-related physics with reduced dimensions and designing advanced spintronic devices.

4.
Nanoscale ; 14(29): 10559-10565, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833619

RESUMO

The van der Waals materials down to the monolayer (ML) limit provide a fertile platform for exploring low-dimensional magnetism and developing the novel applications of spintronics. Among them, due to the absence of the net magnetic moment, antiferromagnetic (AFM) materials have received much less attention than ferromagnetic ones. Here, by combining scanning tunneling microscopy and state-of-the-art first-principles calculations, we investigate the preparation, and electronic and magnetic properties of a vanadium(II) iodide (VI2) ML. Single-layer VI2 has been grown by molecular beam epitaxy on Au(111) surfaces. A band gap of 2.8 eV is revealed, indicating the semiconducting nature of the VI2 ML. Vanadium and iodine vacancy defects give rise to additional feature states within the bandgap. A typical 120° AFM spin ordering is maintained in the ML limit of VI2, as revealed by the first-principles calculations. Besides, the AFM coupling is greatly enhanced by slightly decreasing lattice constants. Our work provides an ideal platform for further studying two-dimensional magnetism with non-collinear AFM ordering and for investigating the possibility of realizing the spin Hall effect in the ML limit.

5.
Nature ; 601(7894): 573-578, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082415

RESUMO

Owing to rapid development in their efficiency1 and stability2, perovskite solar cells are at the forefront of emerging photovoltaic technologies. State-of-the-art cells exhibit voltage losses3-8 approaching the theoretical minimum and near-unity internal quantum efficiency9-13, but conversion efficiencies are limited by the fill factor (<83%, below the Shockley-Queisser limit of approximately 90%). This limitation results from non-ideal charge transport between the perovskite absorber and the cell's electrodes5,8,13-16. Reducing the electrical series resistance of charge transport layers is therefore crucial for improving efficiency. Here we introduce a reverse-doping process to fabricate nitrogen-doped titanium oxide electron transport layers with outstanding charge transport performance. By incorporating this charge transport material into perovskite solar cells, we demonstrate 1-cm2 cells with fill factors of >86%, and an average fill factor of 85.3%. We also report a certified steady-state efficiency of 22.6% for a 1-cm2 cell (23.33% ± 0.58% from a reverse current-voltage scan).

6.
Phys Chem Chem Phys ; 23(38): 22155-22159, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34580696

RESUMO

Selective C-H bond activation of polycyclic aromatic hydrocarbons is challenging due to the relatively high bond dissociation energy and the existence of multiple equivalent C-H sites. Herein, we report a scanning tunneling microscopy study on the covalent coupling of pentacene molecules on Au(110) surfaces. The missing-row reconstruction of Au(110) surfaces strengthens the molecule-substrate interactions. At elevated temperatures (470-520 K), pentacenes undergo direct aryl-aryl coupling via C-H bond activation. Due to the anisotropic feature of the reconstructed Au(110) surface, pentacenes are preferentially oriented parallel or perpendicular, making the linear and T-shaped dimers the predominant products. Based on density functional theory calculations, the aryl C-H bond activation barrier is reduced to 1.42 eV on Au(110)-(1 × 3) reconstructed surfaces, at which the extra row of gold atoms located in the (1 × 3) reconstructed grooves plays a key role.

7.
J Phys Chem Lett ; 12(32): 7752-7760, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34369783

RESUMO

Thickness-dependent magnetic behavior has previously been observed in chemical vapor deposition-grown chromium selenide. However, the low-dimensional structure in nonlayered chromium selenide, which plays a crucial role in determining the low-dimensional magnetic order, needs further study. Here, we report the structure-dependent magnetic properties in monolayer CrSe2 and Cr2Se3 grown by molecular beam epitaxy. In the monolayer CrSe2, 1T-CrSe2 with a lattice constant of 3.3 Å has a metallic character, coexisting with the 1T″ phase with 2 × 2 surface periodicity. Monolayer CrSe2 can be transformed into Cr2Se3 with a lattice constant of 3.6 Å by annealing at 300 °C. X-ray magnetic circular dichroism (XMCD) measurements combined with DFT calculations reveal that while the MBE-grown monolayer CrSe2 is antiferromagnetic, monolayer Cr2Se3 is ferromagnetic with a Curie temperature of ∼200 K. This work demonstrates the structural diversity in nonlayered chromium selenide and the critical effect of different structures on its electronic and magnetic properties.

8.
J Phys Chem Lett ; 12(9): 2199-2205, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33630596

RESUMO

As a van der Waals magnetic semiconductor, chromium triiodide (CrI3) is widely considered for its high research value and potential applications. Defects in CrI3 are inevitably present and significantly alter the material properties. However, experimental identification of defects of CrI3 at the atomic level is still lacking. Here for the first time, we carried out a scanning tunneling microscopy (STM) study and density functional theory calculations to explore the intrinsic defects in monolayer CrI3 grown by molecular beam epitaxy. The three most common types of intrinsic point defects, i.e., I vacancy (VI), Cr vacancy (VCr), and multiatom CrI3 vacancy (VCrI3) with distinct spatial distributions of the localized defect states, are identified and characterized by high-resolution STM. Moreover, defect concentrations are estimated based on our experiments, which agree with the calculated formation energies. Our findings provide vital knowledge on the types, concentrations, electronic structures, and migration mechanism of the intrinsic point defects in monolayer CrI3 for future defect engineering of this novel 2D magnet.

9.
Chem Commun (Camb) ; 56(76): 11239-11242, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32820756

RESUMO

Perchlorocoronene undergoes random dehalogenation at elevated temperatures, resulting in the formation of a disordered gold-coronene complex on Au(111) surfaces. The dehalogenation can be guided by introducing intermolecular constraint from accompanying molecules coexisting on the surface. Owing to the intermolecular electrostatic interactions, gold-coronene wires are intercalated between the polyphenylene chains, which hinders the transverse dehalogenation and results in an improved tendency toward linear gold-coronene molecular wires.

10.
Chem Sci ; 12(4): 1272-1277, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34163889

RESUMO

Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.

11.
Sci Bull (Beijing) ; 65(13): 1064-1071, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659157

RESUMO

Single- and few-layer chromium triiodide (CrI3), which has been intensively investigated as a promising platform for two-dimensional magnetism, is usually prepared by the mechanical exfoliation. Here, we report direct growth of single-layer CrI3 using molecular beam epitaxy in ultrahigh vacuum. Scanning tunneling microscopy (STM), together with density functional theory (DFT) calculation, revealed that the iodine trimers, each of which consists of three I atoms surrounding a three-fold Cr honeycomb center, are the basic units of the topmost I layer. Different superstructures of single-layer CrI3 with periodicity around 2-4 nm were obtained on Au(1 1 1), while only the 1 × 1 structure was observed on the graphite substrate. At an elevated temperature of 423 K, single-layer CrI3 began to decompose and transformed into single-layer chromium diiodide. Our bias-dependent STM images suggest that the unoccupied and occupied states are spatial-separately distributed, consistent with the results of our DFT calculation. We also discussed the role of charge distribution in the super-exchange interactions among Cr atoms in single-layer CrI3.

12.
Phys Chem Chem Phys ; 21(32): 17836-17845, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378800

RESUMO

In organic-inorganic hybrid perovskite solar cells, though the current density-voltage (J-V) hysteresis phenomenon is accepted to be caused by ion migration coupled with charge carrier recombination, there are still rich hysteresis characteristics (various J-V hysteresis loops) remaining to be explained. Here, a systematic drift-diffusion simulation study is conducted to explore the effect of interfacial recombination lifetime (τinterface), bulk charge carrier lifetime (τbulk) and mobility (µ) on J-V hysteresis behaviors. The simulation results show that, for devices with only interfacial recombination, the decrease of τinterface will lead to J-V hysteresis loops with a large gap on the open circuit side. For devices with only bulk recombination, the drop of τbulk will lead to J-V hysteresis loops with a large gap on the short circuit side. Meanwhile, in both cases, the decrease of µ aggravates the effect of interfacial and bulk recombination, while it has no effect on VOC. Our simulations reveal the effect of decreased τinterface, τbulk and µ on the J-V characteristics and explain the hysteresis loops with specific shapes, which have been reported in the literature.

13.
J Phys Condens Matter ; 31(39): 395502, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31185461

RESUMO

We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI3/SnI3/CrI3 trilayer structure. From first-principles calculations, the BiI3-type SnI3 monolayer without spin-orbit coupling has Dirac cones at the corners of the hexagonal Brillouin zone. With spin-orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing Z 2 invariant and an effective model from symmetry considerations. Without spin-orbit coupling, the Dirac points are protected if the CrI3 layers are stacked ferromagnetically, and are gapped if the CrI3 layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups [Formula: see text] and [Formula: see text], corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin-orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.

14.
Phys Chem Chem Phys ; 20(17): 12217-12222, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29687133

RESUMO

The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

15.
J Am Chem Soc ; 140(12): 4222-4226, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537262

RESUMO

We report the synthesis and characterization of two hexapole [7]helicenes (H7Hs). Single crystal X-ray diffraction unambiguously confirms the molecular structure. H7H absorbs light, with distinct Cotton effect, from ultraviolet to the near-infrared (λmax = 618 nm). Cyclic voltammetry reveals nine reversible redox states, consecutively from -2 to +6. These chiroptical and electronic properties of H7H are inaccessible from helicene's small homologues.

16.
J Am Chem Soc ; 140(14): 4820-4825, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29432011

RESUMO

Surface-assisted polymerization of alkanes is a remarkable reaction for which the surface reconstruction of Au(110) is crucial. The surface of (1×2)-Au(110) precovered with molecules can be completely transformed into (1×3)-Au(110) by introducing branched methylidene groups on both sides of the aliphatic chain (18, 19-dimethylidenehexatriacontane) or locally shifted into (1×3)-Au(110) under exposure to low-energy electrons (beam energy from 3.5 to 33.6 eV, for alkane dotriacontane). Scanning tunneling microscopy investigations demonstrate that alkane chains adsorbed on (1×3)-Au(110) are more reactive than on (1×2)-Au(110), presenting a solid experimental proof for structure-reactivity relationships. This difference can be ascribed to the existence of an extra row of gold atoms in the groove of (1×3)-Au(110), providing active sites of Au atoms with lower coordination number. The experimental results are further confirmed by density functional theory simulations.

17.
ACS Appl Mater Interfaces ; 9(17): 15130-15138, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28406008

RESUMO

We propose a versatile yet practical transferring technique to fabricate a high performance and extremely stable silver nanowire (AgNW) transparent electrode on arbitrary substrates. Hydroxylated poly(ethylene glycol) terephthalate (PET) or poly(dimethylsiloxane) (PDMS) deposited with AgNWs was selectively decorated to lower its polar surface energy, so that the AgNWs were easily and efficiently transferred into an epoxy resin (EPR) as a freestanding film (AgNWs-EPR) or onto various substrates. The AgNWs-EPR capped with alkanethiolate monolayers exhibits high conductivity, low roughness, ultraflexibility, and strong corrosion resistance. Using the transferring process, AgNWs-EPR was successfully constructed on rough, adhesive, flimsy, or complex curved substrates, including PET, thin optically clear adhesive, papers, a beaker, convex spherical PDMS, and leaves. A flexible touch panel enabling multitouch and a curved transparent heater on a beaker were first fabricated by using the composite film. These demonstrations suggest that the proposed technique for AgNWs is a promising strategy toward the next generation of flexible/portable/wearable electronics.

18.
Nat Commun ; 8: 14924, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361958

RESUMO

Embedding non-hexagonal rings into sp2-hybridized carbon networks is considered a promising strategy to enrich the family of low-dimensional graphenic structures. However, non-hexagonal rings are energetically unstable compared to the hexagonal counterparts, making it challenging to embed non-hexagonal rings into carbon-based nanostructures in a controllable manner. Here, we report an on-surface synthesis of graphene-like nanoribbons with periodically embedded four- and eight-membered rings. The scanning tunnelling microscopy and atomic force microscopy study revealed that four- and eight-membered rings are formed between adjacent perylene backbones with a planar configuration. The non-hexagonal rings as a topological modification markedly change the electronic properties of the nanoribbons. The highest occupied and lowest unoccupied ribbon states are mainly distributed around the eight- and four-membered rings, respectively. The realization of graphene-like nanoribbons comprising non-hexagonal rings demonstrates a controllable route to fabricate non-hexagonal rings in nanoribbons and makes it possible to unveil their unique properties induced by non-hexagonal rings.

19.
ACS Nano ; 10(1): 1126-31, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26643387

RESUMO

We report on the atomic structures of methylammonium (MA) lead iodide (CH3NH3PbI3) perovskite surfaces, based on a combined scanning tunneling microscopy and density functional theory calculation study. A reconstructed surface phase with iodine dimers, coexisting with the pristine zigzag phase, was found at the MA-iodine-terminated (001) surfaces of the orthorhombic perovskite films grown on Au(111) surfaces. The reorientation of surface MA dipoles, which strengthens the interactions with surface iodine anions, resulting in a slight energy reduction of 34 meV per unit cell, is responsible for the surface iodine dimerization. According to our calculation, the surface MA dipoles weaken the surface polarity and are therefore considered to be stabilizing the surface structures.

20.
Nanotechnology ; 26(38): 385601, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26314756

RESUMO

We investigate an anthracene derivative, 3(5)-(9-anthryl) pyrazole (ANP), self-assembled on the Au(111) surface by means of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. A chessboard-like network structure composed of ANP molecules is found, covering the whole Au(111) substrate. Our STM results and DFT calculations reveal that the formation of chessboard-like networks originates from a basic unit cell, a tetramer structure, which is formed by four ANP molecules connected through C-H…N hydrogen bonds. The hydrogen bonds inside each tetramer and the molecule-substrate interaction are fundamentally important in providing a driving force for formation of the supramolecular networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...